
Magnetic ordering of R3Cu4Sn4 (R  =  Tb, Dy, Ho and Er)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys.: Condens. Matter 15 5279

(http://iopscience.iop.org/0953-8984/15/30/310)

Download details:

IP Address: 171.66.16.121

The article was downloaded on 19/05/2010 at 14:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/15/30
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 15 (2003) 5279–5296 PII: S0953-8984(03)60506-0

Magnetic ordering of R3Cu4Sn4 (R = Tb, Dy, Ho and
Er)
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Abstract
Neutron diffraction studies of polycrystalline R3Cu4Sn4 (R = Tb, Dy, Ho,
Er) intermetallic compounds with the orthorhombic Gd3Cu4Ge4-type crystal
structure indicate the existence of different magnetic structures. Rare earth
atoms occupy two non-equivalent 2d and 4e sublattices. The rare earth
magnetic moments order at low temperatures. For R = Tb and Dy the magnetic
structures below the Néel temperature are described by the propagation vectors
k = (0, 0, 1

2 + δ). In these compounds both rare earth sublattices order. For
R = Ho the magnetic structure is more complicated. There are two vectors;
one of them is k = (0, 1

2 , 0)whereas the second one changes with temperature.
For the Er compound there is the propagation vector k = ( 1

2 ,
1
2 , 0) which

describes the magnetic ordering in the 2d sublattice and at low temperatures is
accompanied by the propagation vector k = (0, 0, δ) describing the ordering
in the 4e sublattice.

1. Introduction

This investigation is a part of a broader study which is expected to systematize the
magnetic properties (including the magnetic structures) of the RmTnXp rare earth intermetallic
compounds, where R is a rare earth atom, T is a d-electron atom and X is a p-electron atom.
According to the x-ray data the R3Cu4Sn4 (R = Tb, Dy, Ho, Er) compounds investigated in
this work crystallize in the orthorhombic Gd3Cu4Ge4-type crystal structure (Immm space
group). In these compounds the rare earth atoms occupy two different crystallographic
sublattices [1]. A similar situation is observed in the RTGe2 (R = heavy rare earth atom,
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T = Ir, Pt) compounds, which crystallize in the orthorhombic crystal structure (Immm space
group); the rare earth atoms occupy two non-equivalent sublattices [2]. Neutron diffraction
data indicate that the rare earth magnetic moments in different sublattices order at different
temperatures and form different magnetic orders [3–5]. R3Cu4Sn4 (R = Tb, Dy, Ho, Er)
compounds are a new class of materials in which it is possible to investigate the similarity of
properties. Temperature dependences of magnetic susceptibility in the temperature range 78–
293 K for the R3Cu4Sn4 (R = Gd–Tm) compounds indicate that they obey the Curie–Weiss
law with negative values of paramagnetic Curie temperature for R = Gd–Ho and a positive one
for R = Er and Tm. The effective magnetic moments correspond to the free R3+ ion values [1].
The new magnetic and specific heat data show that these compounds are antiferromagnets with
Néel temperatures equal to 10.4 K (R = Ce) [6, 7], 11.2 K (Pr), 1.8 K (Nd), 9 K (Sm) [8],
13 K (Gd) [6] and 5.8 K (Er) [9]. Below TN additional phase transitions in the ordered states
are detected.

Previously we have also investigated the R3Cu4Ge4 (R = Tb, Dy, Ho, Er) compounds [10]
and so we have managed to determine their crystal and magnetic structures as functions of
temperature. This work may thus be considered as a continuation of previous work. This time
we also report the results of x-ray, neutron diffraction and magnetic investigations of structural
and magnetic properties of the R3Cu4Sn4 compounds, where R = Tb, Dy, Ho and Er.

2. Experimental procedure

Polycrystalline samples of the R3Cu4Sn4 (R = Tb, Dy, Ho, Er) compounds, each with a total
weight of about 7 g, were synthesized by arc melting of stoichiometric amounts of high-
purity elements (3 N purity for R elements and 4 N for Cu and Sn) in a Ti/Zr gettered argon
atmosphere. The reaction products were annealed at 800 ◦C for a week.

In order to check their purity, the samples were examined by x-ray powder diffraction
(Cu Kα radiation). The peaks in the x-ray patterns were indexed in the orthorhombic
Gd3Cu4Ge4-type structure.

Neutron diffractograms were obtained on the E6 instrument at the BERII reactor at
the Hahn-Meitner Institut, Berlin. The incident neutron wavelengths were 2.441 Å (for
Tb3Cu4Sn4) and 2.448 Å (for the remaining compounds). Diffraction patterns were recorded
at different temperatures between 1.5 and 20 K. The Rietveld-type program FULLPROF [11]
was adopted for processing the neutron diffraction data.

Magnetic data were collected using a SQUID magnetometer in the temperature range 1.5–
30 K and in external magnetic fields up to 100 Oe.

3. Symmetry analysis

Models used for refinement of magnetic structures are usually presented as sets of Fourier
coefficients describing the magnetic moment components on particular ions. The use of
symmetry is restricted to imposing extra constraints for magnetic moments localized on
symmetry-equivalent atoms. The method used here is based on the theory of representations of
space groups and was first proposed by Bertaut [12] and Izyumov [13]. It gives the possibility
of considering all the possible models for magnetic structures consistent with a given crystal
structure with symmetry space group G. According to this method the magnetic structure
given by S can be expressed in the coordinate system formed by the basis vectors�kl ,ν

λ of the
irreducible representations of the group G. Such a coordinate system is the best one matching
the symmetry of the problem and it provides the simplest form for the magnetic structure



Magnetic ordering of R3Cu4Sn4 (R = Tb, Dy, Ho and Er) 5281

description because it requires the lowest number of independent parameters. S is described
as a linear combination of basis vectors (magnetic modes) and is given by

S =
∑
l,ν,λ

ckl ,ν
λ � l (1)

where l is the number of k vectors determined by experiment, ν is the number of irreducible
representations and λ is the dimension of the νth irreducible representation given by the
symmetry of the crystal structure. The symmetry group G(k) of the k vectors is a subgroup
of the space group G. From this fact it follows that the set of equivalent positions in the group
G, the so-called orbit in G, may split into independent sets of equivalent positions in G(k).
Thus, one orbit in the group G can lead to two or more orbits in the G(k) subgroup. The
possible relations between the magnetic moments inside a given orbit are limited by symmetry
and a single set of parameters describes the magnetic structure of all atoms belonging to
the same orbit. Symmetry allows independent magnetic orderings in different orbits. For
orbits belonging to different representations, the magnetic moments, phases, etc differ and the
magnetic moments localized at atoms belonging to one orbit may order at temperature T1 while
the moments belonging to another orbit may order at T2. The relations between the different
orbits depend on the minimum of energy of the full structure, not on symmetry.

The form of the basis vectors and information about which of the representations take
part in the phase transition under consideration are directly given by the theory of groups and
representations. In this work we use the computer program MODY [14], which is based on
the theory of groups and representations, to calculate this information. It is important to note
that the basis vectors have the same translational properties as Bloch functions. Therefore,
the basis vectors may be defined on positions of a given orbit in the elementary cell of the
crystal as well as in the elementary cell translated by a lattice vector t, which just corresponds
to a multiplication by eik1 t . The different sets of ckl ,ν

λ parameters, where ckl ,ν
λ may be complex,

correspond to different models of the magnetic structure and may be used as good order
parameters in the Landau–Ginzburg theory of phase transitions. However, not all of the
possible ckl ,ν

λ are allowed, because the parameters should be selected in such a way that the
resulting magnetic moments related to all atoms have real values. This condition influences
the set of equations which the ckl ,ν

λ have to satisfy, and as a result the number of independent
free parameters is reduced and strictly determined. Because of the Bloch-like form of the basis
vectors and the necessity of getting real values for S, only one of the k vectors in the set of
symmetry related k vectors (the so-called star-of-k) has to be included in the linear combination
for S (see equation (1)) if the magnetic cell is the same as the crystallographic unit cell or
doubled in any direction (ki = 0 or 1

2 ). For any other commensurate or incommensurate
magnetic structure both the k and −k vectors in the star-of-k must be included in the linear
combination describing S. The essential fact is that magnetic phase transitions usually take
place according to one irreducible representation with a not too large dimension.

4. Results

4.1. Crystal structure

The x-ray patterns recorded at 300 K, as well as the neutron diffraction patterns recorded
at 20, 20, 15 and 10 K for Tb3Cu4Sn4, Dy3Cu4Sn4, Ho3Cu4Sn4 and Er3Cu4Sn4 respectively,
confirmed that these compounds crystallize in the orthorhombic structure of Gd3Cu4Ge4-type,
described by the Immm space group. In this structure the rare earth atoms occupy two sites,
2d ( 1

2 , 0, 1
2 ) and 4e (x, 0, 0); the Cu atoms are situated at the 8n (x, y, 0) positions and the Sn

atoms are at the 4f (x, 1
2 , 0) and 4h (0, y, 1

2 ) positions in the crystal unit cell. The determined
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Figure 1. Crystal structure of the R3Cu4Sn4 compounds (only R and Cu atoms are presented).

(This figure is in colour only in the electronic version)

Table 1. The refined structural parameters of the R3Cu4Sn4 (R = Tb, Dy, Ho, Er) compounds
(space group Immm (No 71)) obtained from the x-ray diffraction patterns at 300 K (labelled by
X) and from neutron diffraction data collected at lower temperatures (labelled by N). Standard
deviations are given in brackets.

Tb3Cu4Sn4 Dy3Cu4Sn4 Ho3Cu4Sn4 Er3Cu4Sn4
Compound
method X N X N X N X N

T (K) 300 20 300 20 300 15 300 10
a (Å) 14.6655(9) 14.623(6) 14.612(1) 14.78(1) 14.5744(8) 14.74(1) 14.5327(8) 14.725(9)
b (Å) 6.9183(4) 6.903(3) 6.9110(5) 6.984(5) 6.9052(3) 6.982(5) 6.8978(3) 6.994(4)
c (Å) 4.4470(3) 4.436(2) 4.4312(3) 4.481(3) 4.4187(2) 4.465(3) 4.4050(2) 4.460(3)
V (Å3) 451.19(5) 447.7(3) 447.48(6) 462.7(6) 444.70(4) 459.4(5) 441.57(4) 459.3(5)
xR 0.1317(8) 0.135(1) 0.1279(8) 0.135(1) 0.1338(5) 0.140(2) 0.1285(5) 0.142(2)
xCu 0.330(1) 0.3314(8) 0.327(1) 0.333(2) 0.3275(7) 0.337(1) 0.3284(7) 0.337(1)
yCu 0.187(2) 0.182(2) 0.184(2) 0.182(4) 0.183(1) 0.181(2) 0.180(2) 0.180(2)
xSn 0.2157(8) 0.216(2) 0.2109(8) 0.203(3) 0.2167(5) 0.206(2) 0.2129(5) 0.208(2)
ySn 0.201(2) 0.208(2) 0.206(2) 0.225(8) 0.203(1) 0.199(3) 0.202(1) 0.205(3)
Rwp (%) 24.66a 8.92 25.28a 10.4 19.59a 7.27 19.31a 9.59
Rexp (%) 15.31a 4.65 14.82a 5.67 10.30a 4.90 9.78a 5.28

a Large values of the quality-of-fit parameters for the x-ray diffraction patterns are caused by the texture, which came
into being during sample preparation.

values of the lattice parameters a, b and c as well as the positional parameters corresponding
to the minimum of the reliability factor are listed in table 1. The crystal structure of these
compounds is shown in figure 1.

4.2. Magnetic structure

Temperature dependences of magnetization of the R3Cu4Sn4 (R = Tb, Dy, Ho, Er) compounds
are shown in figure 2. In the cases of Tb3Cu4Sn4 and Dy3Cu4Sn4 maxima at about 17.5 and
14 K are observed. In the temperature dependence of the magnetization of Ho3Cu4Sn4 a jump
in the temperature range 1.5–3.5 K and then a broad maximum between 3.5 and 8 K are visible.
For Er3Cu4Sn4 two maxima at 2.5 and 6 K are detected. The determined values of the magnetic
transition temperatures are summarized in table 2. Neutron diffraction patterns recorded at
low temperatures reveal the presence of additional peaks of magnetic origin.
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Figure 2. Temperature dependences of magnetization at the magnetic fields of 100 Oe for the
R3Cu4Sn4 (R = Tb, Dy, Ho, Er) compounds.

Table 2. The Néel temperatures TN and the values of the magnetic moments µ of the R3Cu4Sn4
(R = Tb, Dy, Ho, Er) compounds, determined from the magnetic (labelled by M) and the neutron
diffraction (labelled by N) measurements. DMM stands for direction of the magnetic moment.

TN (K) µ (µB)

2d 2d 2d 4e 2d 4e
R M N Exp Exp Theor DMM DMM

Tb 17.5 17.5 8.7(3) 6.8(2) 9.0 ‖a ‖a
Dy 14 15 8.2(5) 7.3(3) 10.0 ‖a ‖a
Ho 8 8.3(1) 10.0(1) 10.0 ‖b ‖a
Er 6 6 6.9(1) 1.8(4) 9.0 ‖c ‖c

4.2.1. T b3Cu4Sn4. The neutron diffraction patterns of Tb3Cu4Sn4 observed at low
temperatures are shown in figure 3. The Tb magnetic moments occupy two sites with the
following positions in the crystal unit cell:

• 4e sites: M1 (x, 0, 0), M2 (1 − x, 0, 0), M3 ( 1
2 + x, 1

2 ,
1
2 ) M4 ( 1

2 − x, 1
2 ,

1
2 ) and

• 2d sites: M5 ( 1
2 , 0, 1

2 ), M6 (0, 1
2 , 0).

The analysis indicates that at 1.5 K the peaks of magnetic origin can be indexed with
the propagation vector k = (0, 0, 1

2 + δ), δ = 0.0848(2), Rmag = 19.83%. For the Immm
space group, the propagation vector k = (0, 0, kz) and the 2d position the symmetry analysis
allows three one-dimensional representations, τ2, τ3, τ4 [15], each of them appearing once.
For the 4e positions four representations are allowed, two of them (τ2, τ3) once and two others
(τ1, τ4) twice. The symmetry analysis calculations show, that in this case all possible orderings
of magnetic structures in each sublattice, correspondingly in the x, y and z direction, may be
done by one representation, and for each representation the model of the structure is completely
fixed by two independent parameters (cν and �ν for the 4e sublattice and dν and �ν for the
2d sublattice).
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Figure 3. Neutron diffraction patterns of Tb3Cu4Sn4 collected at 1.5 and 20 K. The dots represent
the experimental points; the solid curves are calculated profiles for the model crystal and magnetic
structures described in the text and the differences between the observed and calculated intensities
(at the bottom of each diagram). The vertical bars indicate the Bragg peaks of nuclear (N) and
magnetic (M) phases. One interval of 2θ is excluded owing to cryostat reflections.

The best fit to the experimental data gives the model in which the magnetic moments in
both sublattices are parallel to the xz-plane and are collinear, but the directions of the ordering
in the sublattices form a small angle. For both 2d and 4e sites the structure may be described as
a linear combination of basis vectors of τ3 (x-components) and τ2 (z-components) irreducible
representations (see tables 3, 4). For the 4e sites the parameters are c3 = 6.7µB, c2 = 1.6 µB,
�3 = �2. For the 2d sites the parameters are d3 = 8.6 µB and d2 = 1.2 µB, �3 = �2. It
is not possible to determine the absolute values of �3 and �3 from the diffraction patterns of
polycrystalline samples, but 	 = (�3 − �3) = −0.52π . The resulting magnetic structure
may be written as:

• for the 4e sublattice (with kz = 0.5848(2)):

M(1 + t) = M(2 + t) = (c3ex − c2ez) cos(kt +�3)

M(3 + t) = M(4 + t) = (c3ex − c2ez) cos(kt + πkz +�3)

• for the 2d sublattice

M(5 + t) = (d3ex + d2ez) cos(kt +�3)

M(6 + t) = (d3ex + d2ez) cos(kt − πkx +�3)
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Table 3. Basic vectors of the irreducible representations for k = (0, 0, kz) of the Immm space
group in the 2d positions; ϕ = πkz .

( 1
2 , 0, 1

2 ) (0, 1
2 , 0)

k

τ2 (0, 0, 1) (0, 0, e−iϕ)

τ3 (1, 0, 0) (e−iϕ, 0, 0)
τ4 (0, 1, 0) (0, e−iϕ, 0)

−k

τ2 (0, 0,−e−2iϕ) (0, 0,−e−iϕ)

τ3 (e−2iϕ, 0, 0) (e−iϕ, 0, 0)
τ4 (0,−e−2iϕ, 0) (0,−e−iϕ, 0)

Table 4. Basic vectors of the irreducible representations for k = (0, 0, kz) of the Immm space
group in the 4e positions; ϕ = πkz .

(x, 0, 0) (1 − x, 0, 0) (x + 1
2 ,

1
2 ,

1
2 ) ( 1

2 − x, 1
2 ,

1
2 )

k

τ1 (0, 1, 0) (0,−1, 0) (0, eiϕ, 0) (0,−eiϕ, 0)
τ2 (1, 0, 0) (−1, 0, 0) (eiϕ, 0, 0) (−eiφ, 0, 0)
τ ′

2 (0, 0, 1) (0, 0, 1) (0, 0, eiϕ) (0, 0, eiϕ)

τ3 (1, 0, 0) (1, 0, 0) (eiϕ, 0, 0) (eiϕ, 0, 0)
τ ′

3 (0, 0, 1) (0, 0,−1) (0, 0, eiϕ) (0, 0,−eiϕ)

τ4 (0, 1, 0) (0, 1, 0) (0, eiϕ, 0) (0, eiϕ, 0)

−k

τ1 (0,−1, 0) (0, 1, 0) (0,−e−iϕ, 0) (0, e−iϕ, 0)
τ2 (1, 0, 0) (−1, 0, 0) (e−iϕ, 0, 0) (−e−iϕ, 0, 0)
τ ′

2 (0, 0,−1) (0, 0,−1) (0, 0,−e−iϕ) (0, 0,−e−iϕ)

τ3 (1, 0, 0) (1, 0, 0) (e−iϕ, 0, 0) (e−iϕ, 0, 0)
τ ′

3 (0, 0,−1) (0, 0, 1) (0, 0,−e−iϕ) (0, 0, e−iφ)

τ4 (0,−1, 0) (0,−1, 0) (0,−e−iϕ, 0) (0,−e−iϕ, 0)

The temperature dependences of the intensities of the 011±, 110± and 112± reflections,
the values of the magnetic moments and the δ value are shown in figure 4 (in (b), (c) and (d)
respectively). These dependences, in particular from figures 4(b) and (c), indicate that the
magnetic ordering in both sublattices disappears simultaneously at about 17.5 K. The moment
values in general decrease with increasing temperature (see figure 4(c)). The 2d sublattice
moment is at all temperatures bigger than the one in the 4e sites and neither changes its
orientation (along a direction, mutually antiparallel). The δ value increases (when we exclude
its value at 17 K from the considerations, see figure 4(d)) with increasing temperature. The
Tb magnetic moments disorder at a Néel temperature of about 17.5 K.

4.2.2. Dy3Cu4Sn4. In the neutron diffraction pattern of Dy3Cu4Sn4 at 1.5 K the additional
peaks of magnetic origin are observed (figure 5).

The analysis of the magnetic peak intensities indicates that at 1.5 K the magnetic peaks
can be indexed with the propagation vector k = (0, 0, 1

2 + δ) where δ is equal to 0.0851(4),
Rmag = 21.86%. The Dy moments order similarly as in the case of Tb3Cu4Sn4 (they form
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Figure 4. Part of the neutron diffraction patterns of Tb3Cu4Sn4 measured as a function of
temperature (a) and the temperature dependences of the magnetic peaks intensities (b), magnetic
moment values (c) and the kz = 1

2 + δ value (d).

the modulated structure in the xz-plane). The structure may also be described as a
linear combination of basis vectors of τ3 (x-components) and τ2 (z-components) irreducible
representations. The difference is for the 2d sites, where only the x-components are non-zero,
and for the 4e sites, where the x and z components both have the same sign. The parameters
which give the best fit of the model to the experimental data are c3

x = 6.4 µB, c2
z = 3.4 µB,

d3
x = 8.2 µB, 	 = (�3 − �3) = −0.51π .

The magnetic moments in both 4e and 2d sites order in one crystallographic cell
ferromagnetically. The moment values are 8.2(5)µB and 7.3(3)µB for the 2d and 4e sublattices
respectively. The temperature dependence of the intensities of the 011± and 110± reflections
is shown in figure 6(b). It reveals that the Dy magnetic moments remain ordered up to the
Néel temperature of about 15 K. The magnetic peaks positions, which do not change with
increasing temperature (see figure 6(a)), suggest that the magnetic structure does not change
either.

4.2.3. H o3Cu4Sn4. The Ho3Cu4Sn4 magnetic structure, resulting in additional peaks in the
neutron diffraction pattern, is observed at low temperatures (see figure 7). The way of ordering
is more complicated in comparison to the two previously described cases.

The analysis reveals that at 1.5 K the magnetic peaks can be indexed with two propagation
vectors: k1 = (0.364(2), 1

2 ,
1
2 ) for the 4e sublattice (Rmag = 17.67%) and k2 = (0, 1

2 , 0) for
the 2d sublattice (Rmag = 18.03%). For the Immm space group, and the propagation vector
k1 = (0.364(2), 1

2 ,
1
2 ), the 4e sublattice splits into two orbits in the G(k) group (positions 1
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Figure 5. Neutron diffraction patterns of Dy3Cu4Sn4 collected at 1.5 and 20 K. The dots represent
the experimental points; the solid curves are calculated profiles for the model crystal and magnetic
structures described in the text and the differences between the observed and calculated intensities
(at the bottom of each diagram). The vertical bars indicate the Bragg peaks of nuclear (N) and
magnetic (M) phases. A small amount of an impurity (most probably SnO2) is present (peak at
about 46◦).

Figure 6. The part of the neutron diffraction patterns of Dy3Cu4Sn4 measured as a function of
temperature (a) and the temperature dependence of the magnetic peaks intensities (b).
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and 3 belong to the first orbit and positions 2 and 4 belong to the second orbit). For each orbit
the symmetry analysis allows two one-dimensional representations: τ1, appearing once, and
τ2, appearing twice (see table 5). The symmetry analysis calculations show that all possible
models of the magnetic structure in this sublattice may be obtained for each representation
and each orbit by two independent parameters, cνi and�ν

i (where i is the number of the orbit).
As regards the 2d sublattice and the k2 propagation vector, three one-dimensional, complex
representations, τ2, τ3 and τ4, each of them appearing once, are allowed (see table 6). The best
fit to the experimental data gives the model in which the magnetic moments are aligned along
the x-direction in the 4e sublattice (described by the basis vectors of τ1 with the parameters
c1

1 = c1
2, �1

1 = �1
2 ) and along the y-direction in the 2d sites (described by the basis vectors of

physical representation τ2 + τ ∗
2 with the parameters d2, θ2). The resulting magnetic structure

may be written as:

• for the 4e sublattice:

M(1 + t) = M(2 + t) = c1ex cos(kt +�1)

M(3 + t) = M(4 + t) = −c1ex cos(kt + πkx +�1)

(kx = 0.364, �1 not determined from powder diffraction pattern).
• for the 2d sublattice:

M(5 + t) = d2ey cos(kt + θ2)

M(6 + t) = d2ey cos

(
kt +

π

2
+ θ2

)

where θ2 = �1.

As can be seen, the Ho magnetic moments in the 4e sublattice form an antiferromagnetic order
with the sequence of signs ++− − in the space of the crystal unit cell; c1 = µ4e = 10.0(1) µB.
In the 2d sublattice the Ho magnetic moments form a ferromagnetic order in the space of the
crystal unit cell; d2 = µ2d = 8.3(1) µB.

At 2.5 K the way of ordering does not change although the values of the magnetic
moments and the x-component of the k1 vector do: k1 = (0.332(3), 1

2 ,
1
2 ), µ4e = 8.8(1) µB

(Rmag = 17.76%), and µ2d = 8.3(1) µB (Rmag = 18.72%), both oriented as they were
previously.

At 3 K the way of ordering in the 2d sublattice does not change,µ2d = 8.2(1) µB along the
b-axis (Rmag = 19.25%) but the k1 vector changes significantly. Now k1 = ( 1

2 ,
1
2 , 0.4685(3))

(Rmag = 19.74%). For the Immm space group, the k1 vector and the 4e sublattice the symmetry
analysis allows two one-dimensional representations: τ1 and τ2, both appearing three times
(see table 7). The best fit to the experimental data gives the model in which the Ho magnetic
moments in the 4e sublattice form a modulated structure with antiferromagnetic order with the
sequence of signs + − − − in the space of the crystal unit cell, µ4e = 7.7(1) µB, (still along
the a-axis), described by the basis vectors of τ2.

At 6.5 K the magnetic structure is described by only one propagation vector which seems
to be a modification of the k2 vector and describes the magnetic ordering in both sublattices.
Now k2 = (0.069(2), 0.480(1), 0) (Rmag = 22.05%). In this case, similar to 1.5 K, the 4e
sublattice splits into two orbits in the G(k) group (positions 1 and 3 belong to the first orbit and
positions 2 and 4 belong to the second orbit), while the 2d positions form one orbit in G(k).
For the 2d sublattice and both orbits of the 4e sublattice the symmetry analysis allows two one-
dimensional representations: τ1, appearing once, and τ2, appearing twice (see tables 8 and 9).
The symmetry analysis calculations and their results in this case are similar to those for 1.5 K.
The analysis of the diffraction pattern leads to the modulated structure with the directions of
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Table 5. Basic vectors of the irreducible representations for k = (kx ,
1
2 ,

1
2 ) of the Immm space

group in the 4e positions; ϕ = πkx .

(x, 0, 0) (1 − x, 0, 0) (x + 1
2 ,

1
2 ,

1
2 ) ( 1

2 − x, 1
2 ,

1
2 )

k

τ1 1st orbit (1, 0, 0) (−eiϕ, 0, 0)
2nd orbit (1, 0, 0) (−e−iϕ, 0, 0)

τ2 1st orbit (0, 1, 0) (0,−eiϕ, 0)
2nd orbit (0, 1, 0) (0,−e−iϕ, 0)

τ ′
2 1st orbit (0, 0, 1) (0, 0,−eiϕ)

2nd orbit (0, 0, 1) (0, 0,−e−iϕ)

−k

τ1 1st orbit (e−2iϕ, 0, 0) (−e−3iϕ, 0, 0)
2nd orbit (e−2iϕ, 0, 0) (−e−iϕ, 0, 0)

τ2 1st orbit (0, e−2iϕ, 0) (0,−e−3iϕ, 0)
2nd orbit (0, e−2iϕ, 0) (0,−e−iϕ, 0)

τ ′
2 1st orbit (0, 0, e−2iϕ) (0, 0,−e−3iϕ)

2nd orbit (0, 0, e−2iϕ) (0, 0,−e−iϕ)

the moments the same as at 1.5 K—in the 4e sublattice along the a-axis (described by the basis
vectors of τ2 with the parameters c2

1 = c2
2 = c2) and in the 2d sites along the b-axis (described

by the basis vectors of the τ ′
2 representation, with the parameters d2 and θ2). The resulting

magnetic structure for the 4e sublattice may be written as:

• for the first orbit:

M(1 + t) = c2ex cos(kt +�2
1 )

M(3 + t) = c2ex cos(kt + π(kx + ky) + �2
1 )

• for the second orbit:

M(2 + t) = c2ex cos(kt +�2
2 )

M(4 + t) = c2ex cos(kt + π(−kx + ky) +�2
2 )

(�2 is not determined from powder diffraction pattern)
• for the 2d sublattice:

M(5 + t) = (b2ex + d2ey) cos(kt + θ2)

M(6 + t) = (b2ex + d2ey) cos(kt + π(−kx + ky) + θ2).

Magnetic moment values are as follows: d2 = µy2d = 7.9(3)µB, b2 = µx2d = 1.7(3)µB,
c2 = µ4e = 3.3(3) µB, �2

1 = θ2. A small difference between �2
1 and �2

2 appears. For
this space group, propagation vector and sublattices the symmetry analysis allows two one-
dimensional representations: τ1 and τ2, both appearing three times (see tables 8 and 9). The
best fit to the experimental data gives the model in which the magnetic moments ordering in
both sublattices is described by the basis vectors of τ2.

At 15 K the Ho moments are no longer ordered.
The diffraction patterns of Ho3Cu4Sn4 for 2θ ranging from 10◦ to 25◦ and for temperatures

between 1.5 and 15 K are collected in figure 8. Constant changes of angular positions of the
magnetic peaks are observed. This makes one aware of how complicated the structure is.
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Table 6. Basic vectors of the irreducible representations for k = (0, 1
2 , 0) of the Immm space

group in the 2d positions.

( 1
2 , 0, 1

2 ) (0, 1
2 , 0)

τ2 (0, 1, 0) (0, i, 0)
τ3 (1, 0, 0) (i, 0, 0)
τ4 (0, 0, 1) (0, 0, i)

Table 7. Basic vectors of the irreducible representations for k = ( 1
2 ,

1
2 , kz) of the Immm space

group in the 4e positions; ϕ = πkz .

(x, 0, 0) (1 − x, 0, 0) (x + 1
2 ,

1
2 ,

1
2 ) ( 1

2 − x, 1
2 ,

1
2 )

k

τ1 (1, 0, 0) (1, 0, 0) (−eiϕ, 0, 0) (eiϕ, 0, 0)
τ ′

1 (0, 1, 0) (0, 1, 0) (0,−eiϕ, 0) (0, eiϕ, 0)
τ ′′

1 (0, 0, 1) (0, 0,−1) (0, 0,−eiϕ) (0, 0,−eiϕ)

τ2 (1, 0, 0) (−1, 0, 0) (−eiϕ, 0, 0) (−eiϕ, 0, 0)
τ ′

2 (0, 1, 0) (0,−1, 0) (0,−eiϕ, 0) (0,−eiϕ, 0)
τ ′′

2 (0, 0, 1) (0, 0, 1) (0, 0,−eiϕ) (0, 0, eiϕ)

−k

τ1 (−1, 0, 0) (−1, 0, 0) (−e−iϕ, 0, 0) (−e−iφ, 0, 0)
τ ′

1 (0,−1, 0) (0,−1, 0) (0, e−iϕ, 0) (0,−e−iϕ, 0)
τ ′′

1 (0, 0, 1) (0, 0,−1) (0, 0,−e−iϕ) (0, 0,−e−iϕ)

τ2 (1, 0, 0) (−1, 0, 0) (−e−iϕ, 0, 0) (−e−iϕ, 0, 0)
τ ′

2 (0, 1, 0) (0,−1, 0) (0,−e−iϕ, 0) (0,−e−iϕ, 0)
τ ′′

2 (0, 0,−1) (0, 0,−1) (0, 0, e−iϕ) (0, 0,−e−iϕ)

Table 8. Basic vectors of the irreducible representations for k = (kx , ky , 0) of the Immm space
group in the 2d positions; ϕ = π(kx + ky), ψ = 2πkx .

( 1
2 , 0, 1

2 ) (0, 1
2 , 0)

k

τ1 (0, 0, 1) (0, 0, ei(ϕ−ψ))
τ2 (1, 0, 0) (ei(ϕ−ψ), 0, 0)
τ ′

2 (0, 1, 0) (0, ei(ϕ−ψ), 0)

−k

τ1 (0, 0, e−iψ) (0, 0, e−iϕ)

τ2 (−e−iψ, 0, 0) (−e−iϕ, 0, 0)
τ ′

2 (0,−e−iψ, 0) (0,−e−iϕ, 0)

4.2.4. Er3Cu4 Sn4. In the neutron diffraction pattern of Er3Cu4Sn4 at 1.5 K additional peaks
of magnetic origin are observed (figure 9). The ordering of the Er magnetic moments at low
temperatures is described by two propagation vectors.

The analysis indicates that at 1.5 K the magnetic peaks can be indexed with two propagation
vectors: k1 = ( 1

2 ,
1
2 , 0) which describes the ordering in the 2d sublattice (Rmag = 21.61%)

and k2 = (0, 0, δ) where δ = 0.08(2) which describes the ordering in the 4e sublattice
(Rmag = 22.99%). The Er moments in both sublattices form a modulated structure with
ferromagnetic order in the space of one crystallographic cell. The Er moments in both
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Table 9. Basic vectors of the irreducible representations for k = (kx , ky , 0) of the Immm space
group in the 4e positions; ϕ = π(kx + ky), ψ = 2πkx .

(x, 0, 0) (1 − x, 0, 0) (x + 1
2 ,

1
2 ,

1
2 ) ( 1

2 − x, 1
2 )

k

τ1 1st orbit (0, 0, 1) (0, 0, eiϕ)

2nd orbit (0, 0, 1) (0, 0, ei(ϕ−ψ))
τ2 1st orbit (1, 0, 0) (eiϕ, 0, 0)

2nd orbit (1, 0, 0) (ei(ϕ−ψ), 0, 0)
τ ′

2 1st orbit (0, 1, 0) (0, eiϕ, 0)
2nd orbit (0, 1, 0) (0, ei(ϕ−ψ), 0)

−k

τ1 1st orbit (0, 0, e−iψ) (0, 0, e−i(ϕ+ψ))

2nd orbit (0, 0, e−iψ) (0, 0, e−iϕ)

τ2 1st orbit (−e−iψ , 0, 0) (−e−i(ϕ+ψ), 0, 0)
2nd orbit (−e−iψ, 0, 0) (−e−iϕ, 0, 0)

τ ′
2 1s orbit (0,−e−iψ, 0) (0,−e−i(ϕ+ψ), 0)

2nd orbit (0,−e−iψ , 0) (0,−e−iϕ, 0)

Table 10. Basic vectors of the irreducible representations for k = ( 1
2 ,

1
2 , 0) of the Immm space

group in the 2d positions.

( 1
2 , 0, 1

2 ) (0, 1
2 , 0)

τ2 (1, 0, 0) (1, 0, 0)
τ ′

2 (0, 1, 0) (0, 1, 0)
τ4 (0, 0, 1) (0, 0, 1)

sublattices are aligned along the c-axis. The moment values are 6.9(1) µB and 1.8(4) µB

for the 2d and 4e sublattices respectively. For the Immm space group, the propagation
vector k1 = ( 1

2 ,
1
2 , 0) and the 2d position the symmetry analysis allows two one-dimensional

representations: τ2, appearing twice and τ4, appearing once (see table 10). The best fit to the
experimental data gives the model described by the basis vectors of τ4. For the 4e positions
and k2 = (0, 0, δ) the best fit to the experimental data gives the model which may be described
by the basis vectors of the representation τ ′

2 (see table 4). The resulting magnetic structure
may be written as:

M(1 + t) = M(2 + t) = c2′
ez cos(kt +�2′

)

M(3 + t) = M(4 + t) = c2′
ez cos(kt + πkz + �2′

)

where kz = 0.08.
At the higher temperature of 3.5 K only the 2d sublattice remains ordered, the k1 vector

does not change but the 2d magnetic moment value equals 7.5(1) µB now (Rmag = 33.01%).
At 6 K the Er magnetic moments are not ordered.
The diffraction patterns of Er3Cu4Sn4 for 2θ ranging from 7◦ to 27◦ and for temperatures

between 1.5 and 6.5 K are collected in figure 10(a) and the temperature dependence of the
magnetic 100±

2 and 100+
1 peak intensities are in figure 10(b). One can observe that this

dependence is anomalous—the magnetic peak intensities first increase to approach a maximum
at about 3.3 K and then decrease with the increase of temperature.
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Figure 7. Neutron diffraction patterns of Ho3Cu4Sn4 collected at 1.5, 6.5 and 15 K. The dots
represent the experimental points; the solid curves are calculated profiles for the model crystal and
magnetic structures described in the text and the differences between the observed and calculated
intensities (at the bottom of each diagram). The vertical bars indicate the Bragg peaks of nuclear (N)
and magnetic phases (M1 and M2 in the top diagram stand for the two magnetic phases described
by the k1 and k2 propagation vectors, respectively, whereas M in the middle diagram indicates the
Bragg reflections connected with the k2 vector).

5. Discussion

The results obtained in this investigation show that the R3Cu4Sn4, where R = Tb, Dy,
Ho and Er, compounds have complex magnetic properties. All of them crystallize in
the orthorhombic Gd3Cu4Ge4-type structure. Rare earth atoms occupy two non-equivalent
2d and 4e crystallographic positions. At low temperatures all these compounds order
antiferromagnetically with different temperature dependences of the magnetic orderings.

Tb3Cu4Sn4 and Dy3Cu4Sn4 have similar magnetic structures, described by the propagation
vector k = (0, 0, 1

2 + δ). The rare earth moments in both 2d and 4e sites order at the same
temperature and the resulting ordering is stable in the temperature range 1.5 K—TN. The value
of the Tb moment in the 2d site is close to the free Tb3+ ion value (9.0(3) µB) whereas in the
4e site it is smaller (only 6.8(2) µB). These moments lie in the a–c plane and form the angles
of 8◦ (the 2d sublattice) and 13◦ (the 4e sublattice) with the a-axis.
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Figure 8. Part of the neutron diffraction patterns of Ho3Cu4Sn4 measured as a function of
temperature (a) and the temperature dependence of the magnetic peaks intensities (b). A, B, C, D,
E, F and G indicate the 100+

2/010−
2 , 110− , 001−

1 /010−
1 /000+

1/011+
1 , 200, 110+

1/100−
1 /101+

1 , 200+
2

and 110−
1 /100+

1/101−
1 peaks.

In Dy3Cu4Sn4 the Dy magnetic moment is equal to 8.2(5) µB in the 2d and 7.3(3) µB in
the 4e sites and is parallel to the a-axis or forms an angle of 27.5◦ with the a-axis respectively.

Totally different and complex magnetic ordering is observed in Ho3Cu4Sn4. At a
temperature of 1.5 K the Ho moment equals 8.3(1) µB in the 2d and 10.0(1) µB in the 4e
sites and is parallel to the b- and a-axis respectively. With increasing temperature a change in
the magnetic structure is observed.

In Er3Cu4Sn4 the Er moment is equal to 6.9(1) µB in the 2d and 1.8(4) µB in the 4e sites
and is parallel to the c-axis in both sublattices. With increasing temperature the Er moment
in the 4e sites disappears. In our measurements we did not detect a phase transition observed
near the Néel temperature at T1 = 5.6 K in [9]. The forms of the propagation vectors are
consistent with ours.

The magnetic properties including magnetic structures of the intermetallic rare earth
compounds result from competition between the Ruderman–Kittel–Kasuya–Yosida (RKKY)
interactions, the magnetocrystalline anisotropy caused by the influence of the crystal
electric field (CEF) and the magnetostriction effect. The long-range RKKY exchange
interactions mediated by conduction electrons favour long-range magnetic ordering while
the magnetocrystalline anisotropy favours uniaxial magnetic ordering.

In the RKKY model the Néel temperatures TN are proportional to the de Gennes factor
G = (gJ − 1)2 J (J + 1) [16]. According to this scaling TN should have a maximum for
Gd3Cu4Ge4. For the investigated compounds the Néel temperatures do not satisfy the de
Gennes relation (see figure 11). This result shows that a simple RKKY model is not suitable for
the description of the magnetic properties of these compounds. This interaction is necessarily
modified by the crystalline electric field effect or magnetostriction, which can significantly
influence the magnitude of the Néel temperature [17].

The second factor which influences the magnetic ordering is crystal electric field. In
the orthorhombic Gd3Cu4Ge4-type (Immm space group) crystal structure the rare earth atoms
occupy two non-equivalent sites: 2d with the 2mm symmetry and 4e with the mmm symmetry.
The magnetic behaviour is different in these two sites, namely, except for the Ho compound,
the magnetic moment in the high-symmetry site is larger than the one in the low-symmetry site.
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Figure 9. Neutron diffraction patterns of Er3Cu4Sn4 collected at 1.5 and 10 K. The dots represent
the experimental points; the solid curves are calculated profiles for the model crystal and magnetic
structures described in the text and the differences between the observed and calculated intensities
(at the bottom of each diagram). The vertical bars indicate the Bragg peaks of nuclear (N) and
magnetic (M1 and M2 for the k1 and k2 propagation vectors respectively) phases. The indices 1
and 2 label the magnetic peaks connected with the propagation vectors k1 and k2 respectively. A
small amount of impurity (most probably SnO2) is present (peak at about 46◦).

Figure 10. Part of the neutron diffraction patterns of Er3Cu4Sn4 measured as a function of
temperature (a) and the temperature dependence of the magnetic peak intensities (b). The indices 1
and 2 label the magnetic peaks connected with the propagation vectors k1 and k2 respectively.

It is likely that the moment reduction is caused by the CEF behaviour. The observed deviation
of the magnetic moments from the a-axis for the Tb and Er compounds and their alignment
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Figure 11. The Néel temperatures versus the de Gennes function for the R3Cu4Sn4 (R = Tb, Dy,
Ho and Er) compounds. The Néel temperature for Gd was taken from [6].

in the b–c plane for the Ho and Er compounds is due to the evolution of the parameters of the
CEF with the increase of the number of the 4f electrons.

The evolution of the magnetic ordering in Ho3Cu4Sn4 is in good agreement with the mean-
field model of magnetic systems, which takes into account the periodic exchange of field and
CEF effect [18].

Disappearance of the Er moment in the 4e sites observed in Er3Cu4Sn4 below the Néel
temperature, determined in this case by the magnetic ordering in the 2d sites, is also observed in
the isostructural R3Cu4Ge4 [10] and RTGe2 [3–5] compounds and is connected with a weaker
coupling between the magnetic moments within this sublattice and between the 2d and 4e
sublattices.

The volume effects observed in the studied compounds may also affect their magnetic
behaviour.
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